Six Little Languages
(and the problems they solve)
David Tilbrook
dt@qgef.com
Nov. 11th, 2003

Six Little Languages
Introduction liadig

Overview of this Homily

® Why Create Little Languages

® How We'll Examine Each Language

® Six (or five) Little Languages
= mkdeps - solving the dependency problem
m strfix - source configuration
= envset - environment configuration
= qvrs & traits - build & system configuration
m gsg - script generation

® Lessons Learned

@ Tricks of the Trade

Six Little Languages e
Wh¥ Create Little Languages © s e

® Appropriate Services and Products

Ironically little languages can offer flexibility

within their domain that cannot be offered by

general purpose languages (e.g., sh, awk, perl).
® Convenience of Expression

Input can be succinct, precise, and appropriate.

Little languages often easy to extend or adapt
to new uses.

@ Return on Investment

Often easier to create and debug a little
language than to struggle to adapt another

Q) - language to meet requirements.
DEWF i
ey ® Conclusions @ Reliability, Efficiency, & Robustness
One can make little languages very fast and
virtually bullet-proof. Sh, perl, and awk scripts
are subject to version skew, the user’s
environment, and often very slooooow.
TLUG -2 Nov. 11th, 2003 TLUG -3 Nov. 11th, 2003
Six Little Languages > = .1 [SixLittle Languages > = .1 [SixLittle Languages .
How We’ll Examine Each Language it mkdeps (1) it mkdeps (2) it

® Problem to be Solved

® Requirements

@ Alternative Approaches

@ History

® Basic Operation

® Syntax & Semantics

® Examples

® Lessons Learned, Problems, Future

Problem to be Solved
® Generation of prerequisite dependencies,
such as:
= C’s “#include”
= Rc’s “TYPELIB”, “BITMAP”, “FONT”,
“CURSOR”
= Java’'s “import”
= TeX's “\import” and “\input”
as might be required by developer or other
processes (e.g., mimk, make).

Alternative Approaches

® Makedepend, but:
= But it's much too slow to run every time
despite makedepend(1)’s statement:
“The approach used in this program enables it
to run an order of magnitude faster than any
other "dependency generator" | have ever
seen.”
It's an order of magnitude slower than mkdeps.
= [ts only service is to amend a makefile

= |t's limited to C and C++

¢ Requirements History
® Must be fast — fast enough to be run ® ged script to process grep output (circa 1975)
every time system is built. ® built-in finite state machine (circa 1979)
® Must be able to accommodate new = encoded in C arrays
languages. = adding new language awkward.
® Must provide a variety of outputs. ® Attempt to add Boyer—Moore search led to
® Must be able to process single line. decision to read finite state encoding from a
file, hence need for compiler.
TLUG —4— Nov. 11th, 2003 TLUG -5 Nov. 11th, 2003 TLUG —6— Nov. 11th, 2003
Six Little Languages = =.-| [Six Little Languages = =.-| [Six Little Languages o
mkdeps (3) s & mkdeps (4) s & mkdeps (5) s &
Basic Operation Example code Portion of c.dps
/** ~{mkdeps} . _
< S < S # x_db source files Start: . =E 47
w mkdeps w # %i file.ext E: ‘e’ =D -1 # got an 'e’; look for preceding 'd’
Description x_db database system rd’ +1
One time Suffixes *.x{db,i} ‘u’ +2
oo depsma; Key x "y +3
Runtime ¢ *-dpe penar Produces *.xdb/.xo - +4
Search0 @SrcPath ? 'n’ +5
sp=[\tl] "if 46
NL=[\n] [T]
L g = ing "%’ ‘\n’ +8
Start: ’%’ =I # look for leading "% sp +7

® mkdeps compiles *.dps files creating
*.dpo files

® depsmap reads *.dpo files to create
deps.map (maps suffixes to *.dpo file)

@ incls reads input files or lines, runs appro—
priate or selected *.dpo file (if necessary)
updating cache with scanned results.

NL
Else skipline
I: "i’ =Sep
NL =Start
Else skipline =Start
Sep: Sp # skip over white space
NL =Start
Else save0 =Gather
Gather: Sp term skipline =Start
NL term =Start
Else save

got '%’; look for '’

skipline +7

D: ’'d’ =U -1 # got "de"; look for preceding 'u’
. =E hiwater +8
® Bops through file looking for an ‘€’ more
than 7 characters into the line.

® If found, checks if preceding char is ‘d’.
and so on.

® Really motors!

Nov. 11th, 2003

Nov. 11th, 2003

Nov. 11th, 2003

Six Little Languages
mkdeps (6) s S e

Six Little Languages
strfix (1) s S e

Six Little Languages
strfix (2) s S e

Conclusions

® Very cryptic, but no ROI on embellishment.
(There are only 12 programs thus far.)

® Doesn’t handle #ifdef ... #endif, but that's
a bad idea anyway.
(mimk handles missing prerequisites properly)

® Speed of finite state machine and caching of
previous scans makes it 100 times faster than
makedepend, thus can be run for every build.

® Provides large range of outputs, including
resolving single line.

® | don't know how people live without it!

Problem to be Solved

In any system, there can be a large number of
parameters that need to be incorporated into
source at build or installation time.

In the Q-Tree, 263 files are configured using
367 different parameters such as header file
mappings, system capabilities or limitations,

and paths.

Requirements

® Need to configure files by replacing symbols
by values specified in a dictionary.

® Needs to be able to avoid gratuitous time—
stamp propagation, i.e., don’t recreate a file
that wouldn’t change.

® Must be able to process any type of source,
e.g., C, sh, make, nroff, tcl, envset, traits, and/or
arbitrary data files.

® Needs to be able to check and report usages.

® Needs to be highly portable and reliable as
is first tool in use on a new system.

Alternative Approaches

Problem arises in that there are two languages:
the dictionary and the file to be processed.
® awk? perl? sh? m4? cpp? sed? qed?

= Not easy to convert dictionary into code.

= Must be able to handle arbitrary strings which
can raise problems.

= Need to support multiple languages prohibitive.
@ autoconfig? You must be joking!

History

@ Used ged (what else?) with hand crafted set
of substitutions to process files (circa 1976).

@ Created awk script to process dictionary pro—
ducing awk script to process files (early 80s).
= Too slow and vulnerable (not to mention ugly).
= Gave up when version skews (Unix vs. BSD)
proved insurmountable.

@ Strfix created in 1981 and used ever since.
Many enhancements, most recently to add
associative arrays.

TLUG - 10 - Nov. 11th, 2003

TLUG — 11— Nov. 11th, 2003

TLUG - 12 - Nov. 11th, 2003

Six Little Languages
striix (3) © S e

Six Little Languages
strfix (4) > %o

Six Little Languages i
strfix (5) —

Basic Operation

strfix

—O option
don't write fileout if unchanged

-
strfix

source*

00

source*

00

Dictionary Syntax & Semantics

set symbol Sym to Val
does set iff Sym unset
append Val to Sym
undefine symbol Sym
do set iff Sym empty
unset Sym if empty

Sym Val

cset Sym Val
append Sym Val
unset Sym
setifnil Sym Val
unsetifnil Sym

® Possible improvements:
= aninclude.
= jf ... fi and/or switch statements.

Resolve lacks using finclude and expressions
and switch statements within source file.

Source Syntax & Semantics

Source Syntax & Semantics continued

@Sym#d@ "#define <Sym val> 1",

if Sym set

"\n#include <Sym val>" if set
a variety of other expressions

that provide esoteric semantics

@Sym#i@
@Sym. ..@

Switch statement:

@{ <string>

@] <pat> ...

... interpreted if string matched
el --- another case; ends previous case
Q} end of switch

Additional strfix Facilities

strfix reads dictionary and then source files, <expression> replaced by ... ® output resolved dictionary
replacing @symbol@ expressions by value of ° i
symbol in dictionary. @syme value of Sym output location of symbol uses
)) @Sym: xxxQ@ Sym val if set, else "xxx"

® Can, optionally replace ~XX by special @Sym+set@ "set" if Sym set

character such as “~RO” —> “®”. @Sym?@ 1 if Sym set, otherwise 0
® Should have an “include” within dictionaries. @Sym=val@ 1if Sym == "val, else 0

= finclude used to deal with lack.
TLUG - 13 - Nov. 11th, 2003 TLUG — 14 - Nov. 11th, 2003 TLUG — 15— Nov. 11th, 2003
Slx_ Little Languages = =.-| [Six Little Languages = =.-| [Six Little Languages o
strfix (6) s & envset (1) s & envset (2) s &

Lessons, Problems, Future
@ Crucial part of boot strap and system
configuration.

= Used to configure header file wrappers, used to
create porting platform and a consistent API.

Used to create system.h, included in every
C source.

= [solates all porting issues and host platform
attributes and characteristics to one and only
one file (i.e., a strfix dictionary). Ports rarely
require any source changes other than the
creation of strfix dictionary.

A new port doesn’t break any previous ports!!!
@ See: hitp://www.qgef.com/html/docs/strfix.pdf
® | don’t know how people live without it!

Problem to be Solved

The environment variables are very important
but rarely well controlled.

Standard systems do not provide adequate tools
and mechanisms to control, select, and export
an environment specification to a remote host.

Requirements

® Database of selectable environments contain—
ing sets and unsets of environment variables,
functions, aliases, and local variables.

® Tool to deliver commands to perform sets and
unsets for sh or csh as eval arguments, as in:
eval ‘envset setl ...°

® Must provide documentation (i.e., list of sets)
and debugging aids.

® Must facilitate remote shell environment
specification.

@ Must be able to specify environment for a
single command.

Alternative Approaches

® Could create csh or sh scripts to be sourced.
No consistent debugging, doesn't facilitate
remote execution. Coding is awkward.

® Could use pkg, but non-standard and clumsy.
Doesn’t provide some necessary facilities.
Tends to monotonically grow the environment.
Not uncommon to see $PATH settings that are
thousands of characters containing all sorts
of duplicates and non-existent directories.

History

® Attempted to build rational login scripts
and partitioned sets of environments.
Created commands to grep and aliases to eval
source files.

® Decided on new approach in 1993 and
created envset which output evalable [sic]
commands.

® envset evolved and other programs enhanced
to load envset sets to set internal environ—
ments.

Nov. 11th, 2003

Six Little Languages
envset (3) =

Six Little Languages
envset (4) © s e

Six Little Languages
envset (5) s S e

Basic Operation

® $HOME/.gtree/envset.cf interpreted
Contains user’s personal envsets.

® $QTREE/data/envset.cf interpreted
Used to specify local settings.

® $QTREE/lib/envset.cf interpreted
Used to specify standard settings for system.

Interpretation

@ Sets to be interpreted selected by argument
name or by being added to selection list.

@ 1st set encountered for a selected name wins.

® Interpreter calls program specific routine
to do sets.

= envset outputs sets as sh or csh commands,
with ;s inserted to allow eval interpretation.
Actual output delayed until all files processed.

= Other programs set environment variables
directly, and ignores function, alias and
variable settings.

Subsequent sets with same name not interpreted.

Set naming and selection
<name> <description> # beginning of a set
&<name> # continuation for <name>
~<pat> # selected if name matched
addset <name> ... # names added to list

to be selected

Flow Control Commands

if <expr> # the usual
elif ié;(pr>
else

fi

switch <str>
case <pat> ...

Start of switch
if <str> matched

endswitch
Set commands

set <Var> <str>
sset <Var> <str> # Set shell variable

eset <Var> <str> # Set export variable
alias <Alias> <str> # Setalias

function <Funct> <str> # Declare function
shemd <command> # Arbitrary shell command

Set local variable

Commands to unset or conditionally set the objects
also exist.

Example

sbin append /sbin:/usr/sbin to PATH
addset path
path set the PATH
eset PATH \
Q@ (trait homeDt) /bin/@System[Name] :\
QQTREE~sg?:?/bin:?/bin:\
@(trait STD_PATH) : /usr/local/bin
&sbin more sbin settings
eset PATH QPATH:/sbin:/usr/sbin

Notes to Unobfuscate the Above
The ‘@’ is the precursor escape.
® @Var is replaced by current value of Var.

® @(function ...) is call to built-in function
@(trait ...) retrieves value from traits database
described in next section.

® @QTREE~sg?:?/bin:? is replaced by the
value of @QTREE with any embedded “’s
replaced by “/bin:”. The ‘~’ post-fix operators
will be explained later.

TLUG - 19 —

Nov. 11th, 2003

TLUG — 20 — Nov. 11th, 2003

TLUG — 21— Nov. 11th, 2003

Six Little Languages
envset (6) i

® »
QEmF

Six Little Languages
qvrs/traits it

Six Little Languages
traits (1) S @@

So ...

Given envset portion on previous page:

add /sbin & /usr/sbin

#to PATH

export PATH before

running <cmmd>

export PATH before

running <job>

rsh host <host-gtree>?2/bin/cush -Q3 \
—sDISPLAY=$DISPLAY \
-E login <cmmd>

eval ‘envset sbin‘?!
cush -E sbin <cmmd>

josh -E sbin <job>

run remote <cmmd>
with login settings.

' I have a function Ev() to make this easier:
Ev(){ eval ‘<gtree>/envset -NQ $*" }

2 <host-qtree> retrieved via socket to ghost.
3 The -Q flag sets QTREE to <host-gtree>.
Conclusions

©® Really useful.
= My .profile & .bashrc files are tiny but universal

® | don’t know how people live without it!

One or two languages?

gvrs and traits are almost the same language,
but

® There are a couple of qvrs facilities not
provided in traits.

@ traits is host specific (one database per host)
The traits database is compiled and saved in
binary form, and only recompiled when the
input files changed.

® qvrs is directory specific.
qvrs database is compiled whenever needed.

® They process very different files.
® They both deliver variable/value databases.
® They have differing purposes and APIs.

Due to similarities, discussion of traits limited
to purpose and basic operations. Discussion of
the language deferred to qvrs section.

Problem to be Solved

Systems have a number of attributes that vary
even within the same operating system such as
path names, tool names, system capabilities
and facilities. Other software needs to retrieve
the value of these attributes.

The attributes (or traits) need to be managed
and provided to the user or software easily.

Requirements

® Centralized database of traits and APlIs to
retrieve these values.

® Debugging aids to help manage the database.

TLUG - 22 — Nov. 11th, 2003 TLUG - 23 - Nov. 11th, 2003 TLUG — 24 — Nov. 11th, 2003
Six Little Languages = =.-| [Six Little Languages e Sl)_(Little Languages e
traits (2) s & traits (3) s & traits (4) s &

Alternative Approaches

® Require the user to have environment
variables that specify the traits.
= Misplaced responsibility that might be beyond
the users’ capability or patience.
m Unreliable and prone to version skew.

® Create overblown, unreliable, crucial, prone—
to—failure registry that often crashes and
renders the host system unusable, frequently
requiring the system to be reinstalled.
= Not a rational option, but is mentioned here as
one organization made this choice.

History

@ Initially used environment variables, but this
had drawbacks given above.

® Created centralized text file similar to strfix
dictionary and associated subroutines to read
and parse this file to retrieve the requested
traits, but was too slow.

@ Adapted qvrs to create mkiraits in 1995.

Basic Operation

&~
mktraits @

Run time

Apps.

® mktraits —u processes $QTREE/data/traits.ext
and $QTREE/lib/traits.vrs to create $QTREE/
data/traits/<host>.tab.
The latter is a network-byte—ordered binary
containing a relocatable symbol table defining
variable/value tuples.

@ Using applications (e.g., qvrs, qsg, envset,
traits) use API to load symbol table and extract
requested traits.

® sh scripts can use traits (the program) to
retrieve a trait.

Example traits
ARFLAGSDASHED 0
BOGUS_CSH 0

BuildPath /bin /usr/bin
DefaultQtreeRel 9.1
GOT_PURIFY O

MAILDIR /var/mail/%s
Qtree[9.1] /ph/qtree/linux2_4i/9.1
SNM_CONTROLS nm —-o # command for snm
STD_PATH /bin:/usr/bin:/usr/X11R6/bin
STXPREFIXLEN 3
TimeZone EST5EDT
_T ar /usr/bin/ar
_T cxx c++

_T _postmail /usr/sbin/sendmail

_T_ranlib ranlib # could be true, really
_T_troff groff

ar flags requires ‘~’
sh bug w.r.t. leading #!
#KIS.S.

path to ar

® Any trait's value may be overridden by setting
shell export variable with same name.

® Variables with names of the form _T_*, _F_*,
*, automatically imported by qvrs and qgef.

Nov. 11th, 2003

TLUG — 26 — Nov. 11th, 2003

Six Little Languages
traits (5) s S e

Six Little Languages
qvrs (1) it

Six Little Languages
qvrs (2) it

Lessons, Problems, Future

® mktraits has to be setuid owner of Q-Tree.
Can lead to problems if root user installs the
system as happened at ING in August.

® Reduces porting problems as traits can be
set at install time and changed as required.

@ Improves control as user does not need to
be involved.

® | don't know how people live without it!

Problem to be Solved

In my experience a build requires hundreds,
if not thousands, of parameters such as paths,
flags, tool names, and recipes.

Most systems do not have appropriate or
sufficient mechanisms to specify, change,
manage, test, or document these parameters.

Requirements

® Must be directory specific.
Must permit trivial local directives to override
or modify settings.

® Must provide debugging aids.
Must provide facilities to determine how and
where a variable was set.

® Must provide mechanism to make temporary
modifications without changing the source!!

® Must be fast, but must be processed at run
time.

® Settings must be accessible to all software.

Alternative Approaches

@ Make? Poor controls. Inaccessible to other
software. Must modify source to change
values.

® Imake? Not much improvement over make.
No debugging, impossible to tell where
something is set.
= One organization had 30,000 defines. Their
builds were very unreliable and slow and
they wondered why.

® Ant (i.e., xml)? Well, it is fashionable.

History

@ Tried using cpp but rejected that approach
quickly. Too many limitations. #define
deficient. Not easy to extract the settings.

® Wrote own cpp with #inherit, #append, ...
Still wrong approach. Still in use but in a much
diminished role.

® Created Iclvars, qvrs precursor, and it grew,
(>500 deltas) particularly w.r.t. files processed
and the ordering of their interpretation.

TLUG - 28— Nov. 11th, 2003 TLUG - 29 — Nov. 11th, 2003 TLUG - 30— Nov. 11th, 2003
Six Little Languages > = .1 [SixLittle Languages > = .1 [SixLittle Languages e
qvrs (3) s S & qvrs (4) s S & qvrs (5) s S &
Basic Operation - Qurs Files Qurs files continued
Object Tree Source Tree Q-Tree root.vrs Configures the tree’s type, src path,
— rootrs R A config name, build host, revision, etc.
conf.vrs "
o i conf.vrs User’s configuration file for flags,
eonivis e | Pep- [ng:c:ga.‘L Pz finzae compiler options, other options.
Iig;mse lleat.rs] qetile leaf.vrs! Temporary overrides for cwd only
.) .) . h as flags, DEB ING option.
~/oranch.vrs File order is crucial and has evolved dramatically] such as flags UGQ 9p fon
.. Jprereqs.vrs » Starting from cwd search up for root.vrs. qgeffile? preamble used to specify options and
.Jp_<sys>.vrs flags before processing following.
..J<sys>.vrs = |n root search for @ConfVrs or conf.vrs. b hurst T des bt
_ ranch.vrs emporary overrides for sub-tree.
® Applications reads qvrs symbol table from file = In cwd look for leaf.vrs c.an be suspended. ’ .) ¢
named by $QVRS_FILE (if defined) or a = Search I(@SrcPath for qe|ff||$ and process tree.vrs Common project settings for sub-tree.
pipeline from qvrs. preamble .. endpreamble if any. prereq.vrs Controls and sets prerequisite project

= Given how many programs use gvrs values,
gef creates temporary qvrs symbol table to

Work up to root looking for branch.vrs and
search across trees for tree.vrs — may suspend.

versions, configs, paths.
p_<sys>.vrs' Project/System specific settings.

to eliminate need for children to run qvrs. m Search @ConfVrsPath for prereq.vrs (optional).
® Sh scripts can retrieve qurs values by running = Search @ConfVrsPath for p_<sysnm>.vrs. <Sys>.vrs System specific settings.
qvrs or qvrsexpr with arguments as in: = Search @SysVrsPath for <sysnm>.vrs. qgeffile? Current directory’s build controls
qurs @_DestDir_ # retrieve _DestDir_value = Pop suspended {branch,tree}.vrs. and build script.
m Search @SrcPath for geffile. ' File may be suspended.
m Pop suspended leaf.vrs. 2 Could be geffile2.
TLUG - 31— Nov. 11th, 2003 TLUG - 32— Nov. 11th, 2003 TLUG - 33— Nov. 11th, 2003
Six Little Languages = =.-| [Six Little Languages = =.-| [Six Little Languages o
qvrs (6) S & & qurs (7) S & & qvrs (8) S & &
Keywords Examples Lessons, Problems, Future

® Usual set of variable settings keywords.

= set, cset, append, prepend, unset, ...

® Special path variable keyword addpath.
Maintains ordered list of directories.

® Flow control if ... fi, switch, include, suspend.

= No loops, no input, no procedures.

Expressions

Arguments to keywords expanded to replace
@<expressions> by evaluations.
@<Var> replaced by value of <Var>
@<var>[str] replaced by value of <Var>[str]
str is expanded
call to internal function <F>
such as expr, exists, trait, findfile

@<expression> may be followed by tilde—ops.
QV~t tails of @V elements

Q(<F> ...)

@V~t~r basenames of tails of @V elements
QV~sg/x/y/ substitute y for x in @V
@V~m/pat/ elements of @V that match pat

root.vrs portion

addpath RootPath /ph/gtree/s9.1/qtree9.1

cset Project gtree

cset Revision 9.1

cset TreeTypel/ph/gtree/s9.1/qgtree9.1] @
baseline

cset Prereqlist tcl(7.4)

cset BuildHost philo

cset QremoteEnv gremote9.lx # envset selection

A qgeffile
set LibStatic[-ldtree] *
set Library[-lldenv] libldenv.@LibSuffix
set Suffixes -std dat
addpath InclPath @(paths ...
if @(sys unix5.4-mx300i)
set _F_instal[gmsg] —g tty
fi
cset _D_cc[system.c] -DSYSNAMES_TAB=...
set _F_instal[mktraits] -M4555
Begin gsg -M # start of the build script
qsg is the script generator

® qgvrs is the lynchpin. It has surprised me
how important it has become.

® Has been applied to applications beyond
software construction such as web page
management at the SEI.

® Facilitates rational specification and use of
options, controls, and flags.

® | don’t know how people live without it!

TLUG — 34 - Nov. 11th, 2003

Six Little Languages
ﬂ (1) > @

Problem to be Solved

Translate a simple specification such as:
library -n X c.c yacc.y lex.l

(i.e., create libX.a containing named modules)

into a script that provides the mechanisms to
perform requested constructions.

But there’s a lot more than just building
libraries and there are target languages other
than make (e.g., sh, xfig, ant, & html).

Requirements

® A very, very fast, highly configurable, easily
extended, easy to use, comprehensive output
generator for arbitrary target languages.

Six Little Languages
ﬂ (2) > »

Alternative Approaches

® Imake? As | said before, you must be joking.
= Clumsy and insufficient levels of abstraction.
m Little improvement over make itself.

@ perl, xml, awk just don’t meet requirements.

History

® As always, qed scripts to transform cryptic
directives into make files. (1978)

@® Specialized programs to create scripts, using
advantage of preprocessor facilities (1982).

® Generalized script generation using shell
like commands and interpreter (1985).

= Did support limited *~" ops.

@ Interpreter replacing above (1987).

Still not fast enough to run every time.

@ qsg created as compiler/interpreter (1989).
= No input. No procs other than separate files.
= But fast enough to be run every time.

® Has evolved into a fairly comprehensive
language with a wide range of applications.

Six Little Languages
ﬂ (3) o 8 @&

Basic Operation

gsgcomp

Onetime |

-

qeffile by default

® gsgcomp and ar are used to create gsl
libraries.
® Normal execution is for gsg to read and
compile the source file (defaults to geffile)
and interpret the result.
= The gsl libraries are searched for scripts
called by script being interpreted.
» Can call source files, rather than qsg object.
® gsg has functions to retrieve traits and qvrs
expressions.

TLUG — 37 - Nov. 11th, 2003

TLUG - 38 - Nov. 11th, 2003

TLUG -39 - Nov. 11th, 2003

Six Little Languages i
ﬂ (4) * o e

Syntax & Semantics

gsg scripts and procs take flags and arguments

similar to shell, except syntax strongly enforced.

Scripts and procs specify accepted flags, as in:
summary <Flag-spec> [-] argument ...
proc <name> <Flag-spec> [-] args ...

<Flag-spec>s look like:

-ab —a and -b accepted. If —a specified,
aFlag set to 1, otherwise set to 0.

-k word flag —k with parameter accepted. If -k

word specified, variable kParm set to

word. Multiple —k flag not allowed.

-k word+ Same as -k, but can be specified
multiple times.

—o[word] -o flag takes optional argument. oOpt
set to specify given options.

This scheme is a real winner.

® No need to encode argument cracking.

® Adding flags and options trivial.

Six Little Languages
ﬂ (5) © @ @

qsg Variables

Local Similar to C auto variables. Set to
empty list on proc or script entry.
Gilobal Values are persistent.

1st-time—switch
Global test—-and-set switches.
qsg Keywords
Variable manipulation: set, cset, add, append,
prepend, drop1st, remove, set1st, gset, ...
Flow control: if ... fi, for ... endfor, repeat ... until,
while ... endwhile, return, returnval, break,
continue, call, <script>.
Miscellaneous: mapscript, gsglib, shell, fatal,
message, abort, debug, dump, trace.
1/O: open, reopen, close, flush, write, >,
<[\J#>, <<, >>, and ><.

= The functions readline, readstr, and readword
used to read input files.

Six Little Languages
ﬂ (6) © @ @
qsg Expressions

All arguments, other than variables, processed
to replace @ followed by special symbols:

@<newline> replaced by space - to wrap lines.

@<space> replaced by \036. Used to embed
literal spaces in list elements.

@<tab> replaced by \037. Used to embed
literal tab in a list element.

@@ A literal @.

@Var' Replaced by value of variable Var.

@(Funct ...)' Function or proc call.

@<name ...>' Equivalent to @(call name ...).

@[V args ...]' Args assigned to variable V and
returned.

@[/G List...]' Replaced by List ..., which is also

assigned to global variable G.

@{Variable}' Replaced by qvrs Variable.

' Can be followed by tilde—ops.

TLUG - 40 — Nov. 11th, 2003 TLUG - 41 - Nov. 11th, 2003 TLUG - 42 — Nov. 11th, 2003
Six Little Languages = =.-| [Six Little Languages = =.-| [Six Little Languages o
The Tilde-Ops qsg Functions Examples

The @ expressions may be followed by one or
more tilde-ops. The ops process the argument
list, left to right. Some of the 44 ops are:

QV~0 The 0th element of V. ~1 for the 2nd
element, ~2 for the 3rd, ...

QV~-3 V minus first three elements.

@V~n 1 if @V not empty, 0 otherwise.

QV~v 1if @V is empty, 0 otherwise.

QV~t tails of the elements

QV~r roots of the elements — suffixes removed.

@v~x/c.1/ Elements of V with suffixes .c or .I.

Qv~d directories of the elements. "." if none

QV~h heads of the elements. "" if none

@v~s/p/r/ Elements of V with 1st parts matched by

rxp p replaced by translation of r (e.g., \N:
Nth matched part; \uN: upper case of \N.
@v~=/str/ Elements of V that equal str.
@v~g/pat/ Elements of V matched by rxp pat.
@v~gt/pat/ Elements of V whose tails are matched.
@v~!g/pat/ Elements of V not matched by rxp pat.
@v~m/pat/ Elements of V matched by glob pat.
@V~ (funct) Call function with V as arguments.

There are 64 built-in functions. Some of the
more important ones are:

@(g Var)
@(1stset switch)

Retrieve global Var

Test and set switch. Returns 1
if switch not previously set.
Call to proc.

Call to script.

Evaluate <expr> convert to
decimal string.

@(proc ...)
@(call scrpt ...)
Q (expr <expr>)

Examples

Echo
>@argv
Echo basenames of gppt files with counts
for A in QRargv~x/gppt/~t~r
>@[N @(expr @N + 1)]~(numf 2d): @A
endfor
The Towers of Hanoi
summary [-n num] [-] tower names ...

endsummary
hanoi @nFlag~:/4/ @argv @# default -nto 4

® What about this page?
This page produced by processing:

/*~ ~{xvxppt}

SlideInit -P

Header -s gsg

H Examples

Bu What about this page?

Bl This page produced by processing:
Cl —0+200 # /** ~{xvxppt}

Cl SlideInit -P

Who needs powerpoint?
® A generalized version system interface
= Set of gsg libraries called sccs, rcs, p4, cvs,
that provided consistent interface to the
version system’s commands.
® A html generating library.
= Provides high level abstractions, taking care
of the <>s, popping the stack, etc.
m Trivial to add new functions (as procs or scripts)
to create even higher level abstractions.

Nov. 11th, 2003

TLUG — 44 — Nov. 11th, 2003

Nov. 11th, 2003

Six Little Languages
gsg (10) g

Examples cont’'d
What about our original requirement?

library -n X c.c yacc.y lex.l

The output is too big to show here (105 lines),
of preprocessor code. It contains, in part, mimk
targets to create {c,yacc,lex}.[ois] (*.i are cpp
outputs), to create, update, and install libX.a,
directives to remove installed or locally created
files.

The following is the output recipe for c.0. Note
that incls will be invoked to output #include
implied prerequisites for c.o.

c.0:P: _S_(c.c) _Touch_ (cc)!?

_T cc —c _F_cc _F _cclec.c] _F cc c \
_F_cc_clec.c] _Optimize (c.c) \
Threads(c.c) _CcFlags_(c.c) _D_cc \
_D_cec[e.c] _InclFlags_() _A (c.c)

The gef preprocessor will convert macros such
as _T_cc, _F_cc*, _* macros appropriately,
extracting their values from the qvrs database.

1 Artificial dependency to force recompilation.

Six Little Languages
ﬂ (11) o 8 @&

Six Little Languages
Tricks of the Trade s e

Lessons, Problems, Future

® (sg is a truly remarkable language. It’s very
fast and fun to use. It has been applied to
some remarkably varied problems such as Sci.
Am. puzzles and drawing and animating hunt-
the-wumpus caves. As for construction:

= A 554 line Imake file for xfig was replaced by 25
line qgeffile which offers far better support.

@ One does need readily available document—
ation as scripts can have many flags and
options.
= To deal with this need, gsgdump has an option

that transforms the summaries as x_db scripts
available via x—-gsg.

® The <flag—specs> and their interpretation,
and tilde—ops are powerful mechanisms that
greatly facilitate coding.

@ [t continues to evolve as it is applied to new
applications. Changes sometimes require
recompilation of the libraries, but "touchfiles
—c gsgcomp” deals with that.

® | don't know how people live without it!

® You'll need a good dynamic string package.

® You'll need a good arithmetic expression
evaluator, e.g., Knuth’s shunting algorithm.

® You'll need a good string hashing routine for
for table look-ups. Here’s Peter Pearson’s:
int strhash(const char *s,
Hshtab_t *htab) /* htab is shuffle of
*\0"to \377" ¥/

int h, ¢;
unsigned char *p;
h = 0;

P = (unsigned char *)s;
while ((c = *p++) != "\0")
h = htab[h*c];

return h;

}
See Pearson, CACM, June 1990.

TLUG — 46 — Nov. 11th, 2003

TLUG — 47 — Nov. 11th, 2003

TLUG — 48 — Nov. 11th, 2003

Six Little Languages
Tricks of the Trade (2) s <

Six Little Languages
Conclusions > S s

® Table driven stuff is easy to extend, and you'll
need to.
gsg started out as a little language but is
now approaching medium sized. However,
extension is often just a matter of a few
table entries and a few lines of code.

® KI.S.S.
® Make debugging aids part of the language

® Avoid making assumptions w.r.t. limitations
of application

@ Little languages are fun and well worth
the effort.

@ Is there another way?
® Any other questions?

TLUG — 49 — Nov. 11th, 2003

TLUG — 50 — Nov. 11th, 2003

