
Washing Behind Your Ears: Principles of Software Hygiene

David M. Tilbrook, John McMullen

dt@qef.com
Sietec Open Systems Division

ABSTRACT

This paper presents a discussion of the objectives of and impediments to software
hygiene, and a list of suggestions to be followed. The suggestions are aimed at mid-sized
projects, although we believe the basic ideas are applicable to all sizes of efforts.

This paper is prepared to accompany Vic Stenning’s ‘‘Project Hygiene’’. We borrow
heavily from that paper with respect to the basic theme of achieving better project quality
through the application of some simple principles. We apply Stenning’s Principles and
Suggestions to source management, as well as developing our own disciplines of software
hygiene.

Additional Caveats and Notes on Republication
This paper was initially given as the keynote address at the EurOpen conference in Nice, France, October,
1990. It was also given at the first Soviet Unix Users Group meeting in Moscow in the same month, but
using the title: ‘‘A Dialectic on Software Autocracy and Anarchy and the History of Unix and Vodka’’. The
paper has since been translated into Russian.

Since those presentations, while the principles and problems remain the same, the qef system has been sub-
stantially changed and improved, most notably with the addition of a graphical user interface to ease learn-
ing and project navigation. This paper has not been modified to reflect those changes except for the addi-
tion of this section and additional Biographical comments.

1. Introduction
This paper is concerned with software hygiene, which we feel is similar to personal hygiene, where soft-
ware hygiene is the science concerned with maintaining healthy software. Like personal hygiene, software
hygiene is most conspicuous in its absence. We do not claim that good software hygiene will help you win
friends and influence people, but poor hygiene will certainly cause you to lose clients and discourage users.

Like personal hygiene, software hygiene is largely a matter of simple practices, the programming equiv-
alent of washing behind your ears and flossing your teeth regularly. In this paper, we’re going to discuss
some of those practices, and (like your mother once did) try to point out some of the dire results of poor
hygiene.

Our examples and our principles of software hygiene concentrate on medium-scale projects involving
about a dozen programmers and a million lines of code, as most of our experience is in that range. How-
ev er, these principles can be scaled up and down to other projects. Some examples are taken from the
authors’ current project, which does follow these principles. (Specific details can be found in the
Appendix.)

The title of this paper was inspired by Vic Stenning’s paper ‘‘Project Hygiene’’ [Stenning 89], which was to
have been presented at the Software Management Workshop, April 1989 in New Orleans. Unfortunately,
Vic was unable to attend, but, fortunately, both his paper and this one are being given as joint keynotes at
this conference.

Stenning’s paper addressed the problems of project control and management, whereas we concentrate on
the control, use, and management of project source. Despite this difference, Stenning’s abstract is directly

-2-

applicable.

‘‘It is suggested that many of the difficulties encountered by systems and software projects are
not the result of deep technical problems, but rather arise from a lack of basic project hygiene −
from failure to enforce various elementary principles and disciplines that are self-evidently pre-
requisite to a successful outcome. Such disciplines are primarily concerned with the control
and co-ordination of both project activities and project products.’’

We will focus primarily on those activities concerned with the development, protection, application, and
distribution of project product in source form. However, the disciplines we outline can be considered to be
special cases of those that Stenning outlines. Stenning continues with:

‘‘Examination of some of the elementary principles of project hygiene suggest that the princi-
ples are often violated. However, while the failings may be obvious, the means for overcoming
such failings are somewhat less so. Suggestions are made both on methods and procedures that
might improve the standard of hygiene with a typical project, and on topics that demand partic-
ular attention.’’

We apply Stenning’s Principles and Suggestions to the realm of source management, evolving our own dis-
ciplines of software hygiene.

‘‘Of course, simply focusing on hygiene will not of itself ensure project success. The success-
ful development of computer systems and software demands a co-ordinated process incorporat-
ing effective methods and supported by effective tools. However, basic hygiene must be at the
very heart of the process, and is essential to creating the conditions under which the various
methods and tools can usefully be deployed.’’

We will discuss some characteristics of the methods and tools that we think are necessary.

‘‘Ultimately, project hygiene is rather like any other form of hygiene: nothing spectacular
comes from its presence, but the effects of its absence can be dramatic.’’

Unfortunately in the Unix world, demonstrations of the last statement are far too common. Many software
projects are bogged down in a morass of internal inconsistencies, poor documentation, versions which can-
not be reproduced for testing, and frantic periods of retrofitting when it turns out that the finished product,
as a whole, can not be constructed, either at the development site or (worse) at a client site.

We hold (and hope) that our software hygiene principles will help.

2. Characteristics of Software Hygiene
The characteristics of good software hygiene are relatively simple.

• Cleanliness: the ability to produce the product, the whole product, and nothing but the product. The
procedure used to deterministically reproduce the product, in either its current form or as it existed at
any time in the past, should be consistent and easily performed at short notice.

• Consistency: the product must be consistent with respect to its source, its installation, and the tests per-
formed upon it. When an instance of the product is created, its behaviour must truly reflect any other
instance of the product produced from the same source, modulo environmental differences (e.g., host
machine and/or operating system). When the source is changed, the product is changed appropriately.
The reconstructed product, incorporating the changed source, must be equivalent to the product that
would be produced by a complete construction from source (a construction from the bare metal, so to
speak). Further, any testing performed on the product must be relevant to the product as delivered. In
other words: what has been tested is what is delivered, and what is delivered, has been tested.

• Adaptable: the facility with which one can transform the product to adapt to changing requirements
imposed by the user and/or target environments, while preserving and protecting the consistency of the
product.

• Universally Helpful: support is provided for all activities concerning the project not just those conven-
tionally associated with source, construction, and configuration management.

A sure sign that some degree of good software hygiene has been achieved is confidence; confidence in the
validity of the testing that has been performed, in the ease of correct installation, and in the consistency of

-3-

the product with respect to its source. When the product is produced, one should be confident that it is
what was supposed to be produced.

The above characteristics do not directly address the issues of product correctness. While our ultimate
objective is correct software, we are actually concentrating on the consistency of the product, be it correct
or incorrect. We want to ensure that problems with the product are not due to errors in the construction
and/or installation process. If errors occur we want to be confident that they are due to: 1) errors in source
that we can deterministically retrieve; or 2) differences between the environment on which the problem was
discovered and the environment on which the product was tested and/or created. Furthermore, we want, as
much as possible to be confident that if the problem is not reproducible from our source (i.e., case # 1), then
it is due to a misunderstood feature of the target environment, or a problem on that environment that is not
part of our product.1

Another reason that we appear to de-emphasize system correctness, is that we firmly believe that correct-
ness is only possible if our listed objectives are met. Furthermore, meeting our objectives will promote and
facilitate achieving system correctness.

But what is ‘‘system correctness,’’ and what other software qualities must be promoted?

In the first chapter of his book Object-oriented Software Construction [Meyer 88], Bertrand Meyer
describes ten basic external quality factors, where ‘‘external’’ is defined as being detectable by users of the
product. These factors are: correctness, robustness, extendibility, reusability, compatibility, efficiency,
portability, verifiability, integrity, and ease of use.

This list represents a good criteria for software quality, and we claim that software hygiene comes from a
concern for software quality. Consequently we consider some of these criteria from the viewpoint of soft-
ware hygiene.

Extendibility Any software discipline must handle with ease the modification of existing source and the
addition or removal of source. The software process used to develop, test, construct,
deliver and maintain the source must be capable of producing the product as represented
by the selected version of the source, no matter what modifications or changes have been
made since its last production.

Reusability The software process must promote and facilitate the sharing (i.e., reusability) of software
components.

Compatibility Our focus is on medium scale software projects. Typically such projects involve a great
deal of integration, but their size cannot guarantee the return on investment required to
employ large scale integration systems (e.g., databases, integration teams). Therefore, the
development and construction must facilitate integration testing in a straight-forward and
universal way, without requiring full-scale construction and testing before source can be
added to the true product baseline. In other words, we want to use a cost effective way of
doing integration testing.

Portability Portability is a very difficult quality to achieve. The adjective ‘‘portable’’ is often abused.
‘‘There is no such thing as portable software; there’s only software that has been ported’’
[Barry Shein, 1989]. Our experience is that writing truly portable software is impossible.
All one can hope for is that the strategy one employs to cope with system differences can
be quickly adapted to cope with and recover from the subtle differences that inevitably
cause the system to fail.

Verifiability We are trying to ensure the validity of any verification (i.e., testing) done before the
source is added to the baseline, or before the product is released. As we have said before,
we want to ensure that is delivered is what was tested. However, like Meyer we want to
ensure that the product can be tested once installed and that the tests are meaningful and
reproducible.

1 It is often amusing when we claim that the problem with our product is due to a bug on their (i.e., the
users’) system. This is usually met with justifiable scepticism, but accepted (albeit begrudgingly) when we
demonstrate that the problem does not exist on the other N (where N > 3) machines on which the system was
constructed from identical sources using identical processes.

-4-

To sum up our objectives, we use the term ‘‘rolling release engineering’’. This is not to imply ‘‘release du
jour’’, rather we mean that at any time, the product as it would be produced from the source, can be pro-
duced, is close to releasable quality, and, for the most part, tested.

Certainly there are many ways to achieve these objectives: Stenning concentrates on project management,
with his major emphasis on project objectives and the software process. Meyer emphasizes the use of an
object-oriented language (Eiffel) to avoid the pitfalls of conventional approaches to software construction.
While not dismissing those issues, we are concentrating almost exclusively on activities directly relating to
the maintenance and processing of source.

3. Software Maintenance — The Field of Conflict
A justification for our emphasis may be derived from the following observations from [Meyer 88]2.

‘‘Often, discussions of software and software quality consider only the development phase.
But the real picture is wider. The hidden part, the side of the profession which is not usually
highlighted in programming courses, is maintenance. It is widely estimated that 70% of the
cost of software is devoted to maintenance. No discussion of software quality can be satisfac-
tory if it neglects this aspect.’’

The 70% figure is based on traditional data processing projects, an area very foreign to the Unix commu-
nity. It seems likely that the percentage is far higher for the Unix community; however, no studies have
been done. Given the lack of any studies, we are forced to use studies from the D.P. dev elopers. In a sur-
vey of 487 installations [Meyer 1988, after Lientz 1979], maintenance costs were broken down as follows:

Breakdown of Maintenance Costs [Lientz 1979]
Reason for Change % of cost

Changes in User Requirements 41.8
Changes in Data Formats 17.4
Emergency fixes 12.4
Routine Debugging 9.0
Hardware Changes 6.2
Documentation 5.5
Efficiency Improvements 4.0
Other 3.4

The above table indicates that changes constitute approximately two-thirds of the cost of maintenance.
Therefore, changes represent 46% (i.e., 66% of 70%) of the cost of software. Consequently, any
improvement in the process of managing changes to a product is therefore addressing close to half of the
cost of software.

4. Impediments to Software Hygiene
Impediments to software hygiene can be roughly divided into three categories: those imposed by the system
suppliers, by the programmers, and by the users and/or management. We had originally planned to use this
section to catalogue and illustrate the multitude of sins committed by these three groups to justify some of
our principles. It is very tempting to use this opportunity to subject some of the suppliers to the same kind
of pain and agony that they inflict on us. But to do so would far exceed the time and space allotted to this
paper, and possibly involve talking to lawyers,3 so, we resist temptation, and limit ourselves to a short list
of requests to these three groups.

To the suppliers:

• Please ensure that your documentation is read by someone other than the author before it is distributed.
This might catch some of the more blatant problems, such as the directive, ‘‘run the following four com-
mands’’ preceding a list of five.

2 The authors wish to express their appreciation to Dr. Meyer for his permission to use these extracts.
3 Or, worse yet, listening to them.

-5-

• Please read your documentation in the form that you distribute it, before you distribute it. For example,
far too often ‘0’s appear instead of ‘‘\n’’.

• Please don’t distribute untested documentation for key elements. Many times it is cheaper for us to
determine how your system is used through experimentation, than to recover from your outright mis-
truths. For example, don’t tell us ranlib is required if the very opposite is true (e.g., ranlib does not
work).

• Please ensure that your compilers are able to compile your header files.

• Please ensure that the key system development tools (cc, ld, as, ar) fail properly − report the problem
and abort − when they run out of resources (e.g., disk, memory). Dumping core is not failing properly.

• Please ensure that warnings are either valid or individually suppressible. Our product construction runs
processes in over 3,000 directories across six environments and produces at least 30,000 lines of diag-
nostics. It is extremely irritating to have to check each warning to ensure it’s not just another one of
your bugs.

• Please ensure that compiling your code does not raise warnings. For example, if your compiler reports
unused variables or unreachable code, ensure that your yacc does not generate such situations.

• Please ensure that your semantics are consistent within your own environment. We don’t really care if
you conform to one of the standards, but we care a great deal about consistent behaviour within a single
environment.

• Please ensure that your lint libraries describe your libraries. We suggest you run lint against the
sources for your libraries and their lint libraries. This is also a way for you to test lint itself, so that the
first time we run it, we don’t get a core dump4.

• Please ensure that your lint is checking the same interpretation of the language definition that your
compiler compiles.

• Please fix your C preprocessor. Whereas most of the above are requested of only some of you, this one
is demanded of all of you, because you all have serious bugs in your cpp. While you are at it, why
don’t you document it?

Let us assure the reader that despite appearances, the above is a very small subset of the problems. It has
been limited to problems that are shared by multiple suppliers, are particularly offensive, or are serious
impediments to software hygiene.

To the programmer, please realize that:

• Your responsibility is to deliver source to someone else in such a way that they can build and use the
product. The fact that ‘‘it works for you’’ is irrelevant.

• If someone else has a problem with your source, then you have a problem. He or she should help to
uncover the cause of the problem — it may be due to the environment or methods — but ultimately, the
responsibility for rectifying it is yours, even though the original problem is not.

• You are a member of a team, and that calls for a certain minimum amount of co-operation. Certain of
the coding practices you were allowed in your previous environment might be considered unsafe, unhy-
gienic, nonsensible, or otherwise unacceptable. Please show some consideration for your fellow team-
members, and refrain from such practices.

• We (the QA group) feel a lot more confident about a series of small changes than one big one. It may
seem that one big change involves less work, but that is rarely reality.

• Management’s prime responsibility is to help you do your job and to help you solve your problems, but
they cannot do that if you do not tell them about problems.

We may view the programmer as an impediment, but we actually believe that the majority intend to meet
their responsibilities to the best of their ability. Howev er, many are not suitably trained when hired. For
most programmers, their first real experience working in a group is after they leave university. At far too
many universities, Software Engineering courses are optional, very poorly taught5, or not offered.

4 Assuming that you act on your bug reports.
5 In one introductory S.E. class, the professor announced that he had written more code than they (the stu-

-6-

Finally, to the users/managers:

• Managers will please re-read the last request to the programmers.

• Users/managers will please realize that software hygiene is a high priority and requires a suitable invest-
ment. It is not something that can be performed by a junior programmer. Furthermore, short-cuts
demanded to meet short-term needs will result in long-term failures.

• Users/managers will please realize that a change in the requirements and/or priorities, requires a change
in the schedules (e.g., deadlines may have to be set back accordingly).

• Users/managers will please realize that unplanned events that require any effort on the part of the devel-
opers (such as demonstrations to potential clients or visiting firemen) are effectively changes to the pri-
orities (see previous request).

• Users/managers will please realize that programmers are (with a few exceptions) human, and as such,
need appreciation and recognition for their efforts.

5. Our Credentials
A brief evaluation of the success of our approach is in order. Details of some of our software process are
described in the appendix.

Our group currently consists of a project manager, a QA manager, 10 dev elopers, and one (lonely) technical
writer. Our primary project is the EMS system, which is a toolkit for building document imaging systems
based on Unix, X11, and Motif. Our principle objective is to deliver that system to our German partners
(Sietec in Berlin and Siemens Nixdorf in Paderborn) who will then build client-specific applications. The
system is primarily targeted to Targons (SNI’s RISC arch. machines), Apollos, Mips, 386s running ODT,
and Siemens’ MX300’s and WX200’s.

The deliverables consist of 19 object libraries (containing approximately 400 modules), 250 header files, 80
application programs, and a testing suite of 50 programs. The total size of the deliverable system is approx-
imately 70 Mega-bytes, consisting of 1240 files, 700 of which are documentation related.

The second major project is the D-Tree, parts of which are used to build and maintain the EMS system6.
The full D-Tree consists of 14 libraries (containing 200 modules) and 250 programs. The full D-Tree deliv-
erables consist of approximately 50 Mega-bytes, consisting of 1800 files.

Combining the EMS and D-Tree systems, there are 3,500 source files containing approximately 600,000
source lines, and 13 Mega-bytes spread across 300 directories. For comparison, X11R3 is also 13 Mega-
bytes, in only 1500 files.

Our approach seems to work. Both the EMS and D-Tree systems are maintained simultaneously on six
environments from identical source, modulo a single construction parameterization file, yet the volume of
changes to that source is huge (40,000 deltas in the last 14 months). Construction failures due to source
errors are few, despite the fact that programmers are not required to test on all six environments. We hav e
ported the EMS system to a variety of machines, with few problems, usually in hours. The problems that
we have encountered are usually due to problems in the host environment (non-working rename(2), buggy
C compilers). Most recently we ported the D-Tree and EMS systems from source to a new machine, a new
operating system, and a new interpretation of the C language definition in about 15 hours (despite a
painfully slow disk). This exercise revealed no problems in our system other than a number of unused
static declarations (the compiler aborted when a static function was declared but not defined) and the
#define of the C keyword ‘‘far’’. However, we did find a number of problems in the target systems: a cpp
bug (a frequently encountered problem); libraries built with header files that were not the ones on the sys-
tem; missing libraries; missing header files; disagreement between the documentation and the implementa-
tion of libc routines; system header file #defines without the associated support routines; and a bug in their
Motif.

dents) would ever see. He did not announce that he also had a well-deserved reputation of never having deliv-
ered a working system. At the end of the term it was amusing to see his students desperately trying to integrate
their systems for the first time, the night before they were due — a situation that this course should have been
teaching them to avoid.

6 The D-Tree system will be distributed at the EUUG Nice conference.

-7-

However, we believe that the best indication that the system is effective is that our programmers like it and
value it highly. Management does not need to pressure new programmers to adapt to the approach − their
peers do that for us. This might not be important to some readers, but we strongly believe that a prerequi-
site to a successful project is a software process that the programmers feel helps them do their job, while, at
the same time, it meets management’s needs.

6. Stenning’s Principles and Suggestions
This section lists Stenning’s Principles and Suggestions of Project Hygiene. Any accompanying explana-
tory text, other than extracted quotations, is to redirect (if necessary) his principle to our area of concern,
software hygiene. We hav e limited the extracts to the minimum amount necessary to convey their intent
and the reader should read Stenning’s original paper, as in places we may have distorted or misrepresented
his meaning.

Principle 1
Everybody involved in the project should know the objectives of what he or she is doing.

‘‘Or, more bluntly, everybody should know what he or she is trying to do.

‘‘This is the fundamental principle of project hygiene, and should not need stating. However, it
is surprising how frequently this fundamental principle is violated, if not totally then partially.’’

This principle applies directly to software hygiene, without modification. In his explanatory text, Stenning
refers to problems with ‘‘fuzzy’’ requirements or inadequate specifications, but then goes on to state

‘‘...The problems arise when the requirements are ill-defined but people proceed as if they were
well-defined.’’

So too in software maintenance and development. Even if the descriptions of software components are
clearly defined, misunderstandings of how, where, and when the components are to be used can lead to fail-
ures in the software construction and testing.

Principle 2
Achievement of the overall project objectives should follow immediately from achievement of all individual
objectives.

‘‘This is the necessary complement to principle 1.’’

In the discussion of this principle, Stenning refers to problems of integration and the phenomenon of seem-
ingly correct individual components failing to combine to produce a working system:

‘‘...[E]veryone seems to know what they are doing, everyone seems to be doing a good job, and
yet the project as a whole has major problems.’’

This problem should be familiar to any software developer and indeed to any engineering discipline, as
illustrated by the recent failures within the 1.5 billion dollar Hubble space telescope, which turned out to be
caused by a software error that could have been caught by correct testing and integration procedures which
were not done for budgetary reasons (sort of mega-buck wise, giga-buck foolish).

In the arena of software hygiene we want to ensure that: if a developer follows the proper procedures for
the development and testing of his or her source prior to ‘‘publication’’, then the integration of the changed
source into the baseline system will be flawless. Unfortunately, sometimes the cost of full integration test-
ing is prohibitive (the fully installed EMS system, which is a relatively small project, requires 130 Mb of
disk on a MIPS). In such cases, the programmers must convey the threat of potential problems ‘‘upwards’’
to ensure that in meeting their objectives they do not jeopardize those of the project.

Principle 3
Both individual objectives and overall project objectives should be realistic.

‘‘People tend to be over-optimistic about what they are able to do and, most especially, about
how quickly they are to do it.

‘‘There is no single factor more damaging to project hygiene than unrealistic targets.’’

-8-

The relevance of this principle to software hygiene should be obvious. Where Stenning uses ‘‘People tend
to be’’, substitute ‘‘Programmers are invariably’’, but they compensate for this characteristic with the
remarkable ability to under-estimate the impact that their changes might have on the rest of the project.

One must attempt to offset the programmers’ natural enthusiasm for their product with a gentle comment
such as, ‘‘We’ll get to that later. At this time, let’s just make sure this works, real [sic] soon.’’

Principle 4
There should be a known method for addressing each individual object.

‘‘Employing appropriate methods is an essential aspect of project hygiene — reliance on per-
sonal inspiration or hidden magic is unhygienic by definition.

‘‘When a new problem is encountered, we may well not know the method by which that prob-
lem should best be tackled. But under these circumstances we should know how we will
explore the problem and determine the method by which the problem should be addressed.’’

There is an unfortunate tendency for programmers to be satisfied with a solution that works in the here and
now, rather than looking for the solution which will work or can be made to work everywhere. This is par-
ticularly true when addressing problems of portability. Often discrepancies are circumvented by using
‘‘quick and dirty’’ work-a-rounds, rather than looking for a solution that ensures that the problem is dealt
with everywhere and will not ‘‘break’’ any previous release of the system.

Principle 5
Changes should be controlled, visible and of known scope.

No further elucidation is required, as Stenning is directly addressing the problems of software maintenance.

Principle 6
Both people and products should be insulated from the effects of changes that are not (currently) of rele-
vance.

It is essential that mechanisms exist that can allow individuals within a project team to postpone changes
until they are prepared to make the necessary adaptation. Unfortunately, full and unlimited support of this
principle will often be too expensive to implement within a medium-scale project. However, in such pro-
jects, it is usually possible to delay changes to the baseline product, while not prohibiting their development
and testing. With such an approach, everyone would use the baseline software by default, but have the
option to explicitly incorporate changes not yet added to that baseline.

Suggestion 1
Focus on the process as a whole, rather than on the (final) product.

‘‘Hygiene is not an attribute of an end product, but rather is an attribute of the process by
which the product is produced. To improve project hygiene, we must focus on this process.’’

This is also true with software hygiene, which is a subset of project hygiene. If a hygienic process is used
to control and change the baseline source, the production of the proper product follows as a natural result.

Later in this suggestion, Stenning states:

‘‘However, it should be recognised that the source code provides a very poor basis for such a
process co-ordination.’’

In this document we emphasize software hygiene via a properly constituted process through which the
baseline source is managed, modified, tested and used to produce the deliverables. This does not contradict
the above statement. We strongly agree with it. The baseline source is nothing more than a modifiable rep-
resentation of the product that can be transformed into the product using a deterministic procedure. As
such, it is ‘‘a very poor basis for process co-ordination’’, but a well defined process for source management
has many of the characteristics and facilities that would be required to properly support the ‘‘process co-
ordination’’ of the medium scale project. Given that most Unix developments have no strategy for the man-
agement of any project information other than source, it’s a small step in the right direction.

Suggestion 2

-9-

Invest more effort in ‘‘higher level’’ descriptions.

‘‘Far too many projects still rush into code. Any time spent on higher level descriptions of the
system — requirements, specifications, designs — is spent grudgingly and sparingly.’’

We enthusiastically adopt this suggestion, although our interpretation of ‘‘description’’ has to be clarified.
Stenning is trying to bridge the enormous distance between

‘‘... [S]ome vague notion of what we want and actual running code’’,

whereas we are looking for better ways to represent the processes that transform the source into the prod-
uct. By ‘‘better’’ we mean more reliable, more responsive, more flexible, more portable, more robust, more
understandable, and considerably more succinct. make, imake, and even make4, just don’t make it. They
are, to what is required, what assembly code is to miranda7. This is not intended to denigrate Stu Feldman
— he showed us the way, but make is fifteen years old and:

‘‘Make is most useful for medium-sized8 programming projects; it does not solve the problems
of maintaining multiple source versions or describing huge programs.’’ [Feldman 78]

To describe our solution (qef, the D-Tree, and associated procedures) is far beyond the scope of this paper
and is better done in [Tilbrook 90]. However, we discuss the essential characteristics of a software con-
struction control system in a later section.

Suggestion 3
Co-ordinate activities as well as products.

‘‘As has already been discussed, there has been a traditional tendency in the software industry
to focus more on products than on process, and particularly on the program code.’’

In some ways, we must plead ‘‘non omnia possumus omnes’’9.

Our emphasis has been directed towards those aspects of the software process that concentrate on the base-
line source. Furthermore, such disciplines as Vic suggests are foreign to the prototypical Unix developer
whose initial design documents usually begin with

main(argc, argv)

However, we do agree, and to that end suggest that the baseline source system provides for the organiza-
tion, management, and protection of ALL the information associated with a project.

Suggestion 4
Adopt a strict policy on project phases.

‘‘Unfortunately, it is not always possible at the outset of a project to judge the realism of the
objectives, simply because there is insufficient information on which to base such a judgement.

‘‘Under these circumstances, where the full scope and difficulty of the project are unknown,
hygiene can be promoted by sub-dividing the project into self-contained phases — so self-con-
tained that each phase is, in effect, a separate project.’’

In nearly all software projects involving the co-operative efforts of even as few as two programmers, well-
defined, short-term, realistic goals and deadlines must be set, monitored, and met. The size and complexity
of the individual phases must be determined keeping Stenning’s 3rd Principle firmly in mind. There are
programmers who can be safely assigned phases that run for months, but they are vastly out numbered by
those who won’t discover, or in some extreme cases, even believe, that they hav e a problem meeting a dead-
line until that deadline has past.10

7 David Turner’s (University of Kent, Canterbury) functional programming language.
8 Historical perspective is required here to appreciate what is meant by ‘‘medium-sized’’: At the time the arti-

cle was written, Unix could be run effectively, and not that unpleasantly, on a 250K non-separate I&D space
pdp11/40 with two 5 Meg rk05s. Pure bliss was an 11/70 with a full meg, even if one had to share it with 5
other developers.

9 (L.) we cannot all do everything — Virgil.
10 Both the keynote speakers for this conference belong firmly in the second classification, if not the third.

-10-

Suggestion 5
Provide more semantic information to the configuration management and build systems.

It’s at this suggestion that Vic drops into one of his long-term fantasies and the subject of many spirited
(both figuratively and literally) Stenning/Tilbrook debates. It is also an area of great importance to software
hygiene, being at the very heart of the product consistency issue.

‘‘As mentioned in section 2, (the section of his paper discussing his fifth principle) the co-ordi-
nation of continuous and concurrent changes is one of the most difficult aspects of project
hygiene. While many mechanisms and tools have been developed to address various aspects of
this problem, and many of these have been extremely valuable, there are still no complete solu-
tions available.

‘‘Of necessity, in order to provide general and accessible solutions to urgent problems, most of
the available change control mechanisms are based upon very simple models. The fact that
something has changed may be measured, and the direct impact of that change assessed by the
use of date/time stamps. Concurrent changes to individual modules are restricted by the use of
check-out/check-in mechanisms. And so on11.

‘‘Clearly such mechanisms perform a useful function, but equally clearly they address only
part of the problem (He’s up in the saddle again). Assessing changes on the basis of data/time
stamps can become extremely inconvenient when one wishes to make a limited change to some
previous release of the system. Check-out mechanisms alone do not address the issues of
maintaining a consistent set of modules when a change may impact several others.’’

Actually, this paragraph should be repeated, with emphasis. Not only are the uses of time stamps or version
numbers inconvenient, there are many situations in which they are far from sufficient. In the Unix world, it
is often dismaying how many people believe that running make ensures system consistency.

‘‘Over the past several years, there has been considerable progress in the fields of change man-
agement — in the context of such languages as Mesa, Modula, and Ada — from exploiting the
syntactic structure of inter-component interfaces (He’s at the post).

‘‘There is considerable scope for further improvement by extending the checking to encompass
not just syntax, but also semantics (He’s off! Unfortunately, his hobby horse is actually a
somewhat pungent dead goat.)’’

Vic’s motives and aims are admirable, but his insistence upon semantic checking over syntactic checking to
discover process dependencies is suspect.

The primary objective of the build system must be to ensure that the product, as constructed, is that that
would be produced by fully processing the selected source. Obviously, this can be accomplished by recon-
structing the entire product, (provided there are no circular dependencies12). However, to fully reconstruct
the system every time its source is changed is, just as obviously, undesirable. Consequently the use of
mechanisms to eliminate redundant processing (i.e., would not produce any significant change in the pro-
duced objects) can be extremely valuable. Such mechanisms usually use some form of prerequisite depen-
dency relationship and a model of consistency based on time/date stamp or version number.

Vic is proposing the use of semantic analysis to derive those dependency relationships and perhaps to
replace the version or time stamp consistency model.

Our argument is that syntactic analysis is sufficient and, when one considers the relative costs and complex-
ities of semantic analysis, is preferable. We base our position on the following observations drawn from
our use of syntactic analysis and extrapolations of the relative cost and complexity of semantic analysis.

Every time our construction system is executed, those inter-component dependencies that can be derived
syntactically13 at run-time, are used to determine whether or not an object is ‘‘consistent’’. We hav e

11 Vic is exhibiting remarkable, although somewhat uncharacteristic, restraint. In person, this sentence
would be repeated at least half a dozen times.

12 If a construction uses previously installed information, multiple constructions may be required to guaran-
tee consistency, but such situations are due to errors in the build ordering.

13 The ‘‘#include’’ of C is only one, but probably the most familiar, example of such a dependency.

-11-

worked very hard to ensure that this syntactic analysis is affordable and accurate, yet it is still extremely
costly. A new implementation is being done to use a lazy algorithm (which will also improve its accuracy)
and to eliminate those file system or data base queries done by the dependency generator that are also done
by the consistency checker.

We realize that it is unfair of us to cite experience with X11/Motif, but, it is those packages that present the
most problems14. We hav e eight such programs, excluding those we use to test X11/Motif itself. When we
apply our dependency tracker against our 36 source files that use Motif or X11 interfaces, we find that the
av erage number of header files is 5015. Howev er, many of the ‘‘#includes’’ are required to provide declara-
tions that are unused in the majority of compilations. Therefore, we can assume that for our typical Motif
source file, the number of relevant dependencies derived semantically would be substantially lower than the
number derived syntactically. An accurate measurement of the reduction is difficult, but we estimate that it
would be about twenty to thirty percent. It should be noted that, if proper coding practices are followed
(e.g., for every interface used within a source file, its associated header files are included) semantic analysis
should not yield any new dependencies.

Through monitoring we have discovered that large majority of reconstructions are due to a change to a
major component (e.g., the C source file itself), or to multiple inconsistencies (target is ‘‘out of sync’’ with
respect to many of its header files)16. In either case it is unlikely that semantic analysis would eliminate any
redundant processes. Therefore, this reduction would be a lot lower than the reduction in dependencies,
due to the typical distribution of changes.

But at what cost?

As we have stated, our syntactic analysis is expensive, both in time and disk space. Yet, semantic analysis
will incorporate the equivalent syntactic scan plus its own analysis and will need to preserve far more infor-
mation. Once a change is detected, syntactic analysis can be limited to the changed file, whereas semantic
analysis will require analysis of all subsequent files as a change in a file can change the semantic interpreta-
tion of a following file. Therefore semantic analysis will cost a great deal more than syntactic analysis, yet
yield a marginal reduction in redundant processes.

On another issue, our system uses a relatively simple finite state automata. We support six different lan-
guages, the most complex of which has six states and fifteen productions. The addition of support for a
new language is relatively simple. The creation of the F.S.A. tables is all that is required to incorporate it
into the construction process. It is obvious that the creation of packages that perform semantic analyses
will be a difficult and costly task, perhaps too difficult and costly to be feasible.

Finally, the problems addressed by semantic analysis are strictly within the realm of the compilation of a
programming language. A large proportion of the production process is compiling, but almost as large a
proportion is not. For our projects, C, yacc, and lex source files constitute only thirty percent of our total
number of files. Developing an approach that can handle semantically derived dependencies, without
penalizing the rest of the construction process will be difficult.

No doubt the irascible Dr. Stenning will want to respond, perhaps citing Protel — aw yes ... Protel ... man-
agement compared it to sliced bread, and the programmers hated it.

7. Dr. Tuna’s Patented Software Nostrums
Up until this point, we have concentrated on generalities, commandments equivalent to ‘‘Bathing is good’’
and ‘‘Exercise is beneficial to your health.’’ Now we get more specific: Dr. Tuna’s Patented Software Nos-
trums are carefully designed to keep your system regular, your inodes clear, your backbone straight, and
your disks unslipped and free of bitrot. Following these guidelines will extend your project’s credibility
and endear you to people who count.

14 Motif could be considered to be a proof of Stenning’s Law that nothing succeeds like the Second Rate, but,
more likely, it’s proof of Tilbrook’s plagiarised Corollary that Stenning is an optimist.

15 This is after unfolding the transitive relationships, which eliminates duplicates and repetitions. If they are
not eliminated (which is the case in the compiler), it is not uncommon to find files that invoke hundreds of dif-
ferent include statements, since many of the required header files are repeated many times.

16 There are pathological cases in which a single touched header file can cause the entire source tree to be
recompiled, but these are usually well planned and much heralded events (sometimes done deliberately).

-12-

These guidelines are for the most part self-evident and self-explanatory; where they are not, some explana-
tion is included.17

1) Give a damn! The first and foremost principle is that you must actually care about having a hygienic
system. This means committing time and resources to the problem and convincing everyone involved
that maintaining a clean system is important and a high priority.

2) There should one and only one source! This source should be used for all constructions for all target
environments.

3) Remember that the product is the source, even if the deliverable is the result of processing that source.

4) Ensure that the deliverable product is that which is constructed from the provided source using a well-
defined non-interactive single pass process that aborts if any phase fails. Minor pre- and post-con-
struction steps are allowed, but they must be well documented and fool-proof.

5) Centralize all construction and installation parameters in one well documented and easily modified
file. Procedural aids to validate the information are useful, but automatic procedures to deduce the
information are difficult to maintain and frequently wrong.

6) Never require the expression of construction information twice. The second instance will be
inevitably wrong.

7) Adhere to Stenning’s Principles and try to follow the first four and a half of his Suggestions.

8) Make sure that everyone involved understands and appreciates the software process. Everyone in the
software project must understand the mechanisms used to create, modify, construct, and maintain the
product. Furthermore he or she must understand the objectives of the software process and why they
are important.

9) Test, test, test, and then test again.

10) Avoid simultaneous introduction of dramatic changes. When introducing a dramatic change, always
start with a known recoverable healthy system.

11) Create and frequently use a file system integrity package that checks for spurious files, missing files,
obsolete files, and so on. This should check the source tree, object tree, and the installed tree. The
source file system check should be done daily. One of the by-products should be mail (or news) to
programmers informing them of their outstanding edits. The object tree and installed tree checks
should be part of the construction process.

12) Work hard to separate the baseline, object, developers’ source, and destination trees.

13) Adopt a standard source directory architecture and constantly test and tune that architecture. Con-
struction ordering is defined in terms of directories. Watch and test for circular dependencies.

14) Limit local construction dependencies to sibling directories or fully installed sub-systems.

15) Do not restrict the methods programmers use to do their own development in their own tree. Rather,
restrict the way they publish their results.

16) Test your construction frequently on as many machines as possible to catch compilation problems as
soon as possible.

17) Always build the full system. You nev er really know the entire scope of the changes.

18) On a regular basis, do a bare metal construction — a complete reconstruction of the system on a
machine that has been purged of any evidence of the system’s previous existence. If the bare-metal
build fails, fix the source, purge any remnants of the failed build and do it again. We do this at least
monthly, and as the last test before shipping any source.

19) Ensure that the product is frequently tested against your own well-understood standards.

20) Ensure the deliverable is trivially relocatable through a change or specification of a single directory.
Furthermore, with the exception of non-sharable resources, multiple versions of the deliverable should
be executable in parallel on the same platform. Switching between versions should be trivial and
complete (i.e., no danger of cross version talk).

17 Further explanation can be purchased at the rate of one beer per nostrum.

-13-

21) Any faith in the standards effort is misplaced. Don’t believe in them and you won’t be disappointed.
They are naive at best, misguiding at worst.

22) Do not insist on any standard that cannot be tested.

23) Adopt a standard for file naming and adhere to it. Overloaded suffixes are forbidden.

24) There is no paragraphing standard worth the time and energy required to impose it, other than be con-
sistent (but reasonable).

25) Ensure that the construction system supports modification of all paths and automatic reconstruction if
a change is significant.

26) Restrict baseline production installations to a small group, preferably the group that approves changes
to the baseline.

27) A change to the baseline source means total re-installation ASAP and all personnel must recognize
that fixing construction problems in the baseline is the highest priority.

28) Record your bugs, and make someone responsible for ensuring that they are fixed.

29) Use lint — when it works, it really helps. We use six different compilers, but lint still finds bugs that
all six missed.

30) Design a test program strategy and provide facilities to quickly build programs that conform to that
strategy.

31) Have others test the entire procedure of source-to-installed-client-site.

32) After any significant problems (especially after disasters), perform a post mortem. The unexamined
failure is not worth having.

33) Isolate all machine dependent sections in a well known location or using a well known and consistent
mechanism.

34) Centralize environment dependent aspects in single location.

35) Never use /usr/include directly from a C source file. Always redirect through your own provided
header file. This will allow you to circumvent their idiocies.

36) Never use ‘‘#include "file"’’. Always use ‘‘#include <file>’’.

37) −D to be considered harmful. If required, ensure that they are applied universally and consistently
and are documented.

38) Don’t overload source files by compiling them in different ways. Remember: one source file to one
type of object file.

39) Develop or adopt a system whereby documentation can be incorporated within the source code files.

40) Develop and use boiler plate for often-written pieces of text, including headers and documentation.

41) Design the system to be ported, from the very start.

42) Avoid compiler-dependent tricks.

43) Avoid special case constructions. If they are useful, make them universal.

44) Avoid differing implementations to support optional semantics.

45) Use function prototypes everywhere and ensure that everywhere a function is used, its prototype is
included.

46) NULL is a four letter word, the meaning of which is unclear, and whose use is dangerous.

47) Minimize your dependence upon suppliers. Expect little from them, and you will not be disappointed.
Resist the urge to fix their bugs. It’s unlikely your clients will have applied the same fixes.

48) Use an installation procedure that validates that cp did not change the size of the installed file (a not
uncommon event on some file systems).

49) Use an installation procedure that refuses to install an empty file without an explicit override. This
catches yet another common file system vice.

-14-

50) Ensure that the undamaged installation of every program can be trivially checked. One way to do this
is to insist every program supports a flag that explains its flags and arguments (e.g., the D-Tree −x
flag). Then just run every program with that flag.

51) Who cares what your programmers wear, so long as they don’t shock the secretaries?

Caveat: This list is by no means complete! Each time we came back to this section, the list had grown
again. Rather than attempt to offer all of the possible guides to correct software hygiene, we shall remind
you of the most important nostrum of all...

Remember your two primary objectives: to have fun and make money. Any other objectives are counter-
productive.

8. Characteristics of a Viable Construction System
Throughout this paper our emphasis has been on the conversion of source into the product via a well known
and reliable mechanism. At our site we use qef (Quod Erat Faciendum) for every construction and as the
driving process behind product installation. Naturally we believe qef is essential to good software hygiene;
however, any construction system that has the following characteristics will do:

• Constructions and Installation without Change to Source: The construction system should support
the initial installations of large collections of software, on a variety of machines, at a variety of sites,
without requiring the modification of any source, using a trivial configuration mechanism (e.g., fill in
the blanks) and a single command.

Source is defined to be all the information that is created manually or must be provided by the supplier.
This, by definition, includes all the information used to control construction and installation.

• Termination on Error: The construction system should halt whenever an error or condition arises that
indicates that a construction has not been successful. The traditional approaches miss many failures due
to inadequate checking by the tools or incorrect error returns on the part of the commands being
executed. However, errors that can be rectified after a complete installation should not terminate the
build but should report the problem in a consistent manner so that the correcting actions may be per-
formed manually.

• Porting without Pain: The construction system should be easily ported to any reasonable Unix system
and provide a totally consistent environment on any system to which it has been ported. The system
should support the construction and installation of software on many different environments without
change to the source itself. Furthermore, the system should promote portability by providing an
approach whereby software can be built, tested and installed on many platforms simultaneously.

• Ease of Distribution Upgrade or Modification: The system should support the upgrading of a previ-
ously installed body of software by the simple addition of new source files and/or the removal or
replacement of old source files, and the issuing of a single command. Furthermore, the addition or
removal of source files should rarely, if ever, require the modification of the construction control files.

• Generalized Controlling Information Specification and Use: The system should provide mechanisms
to specify and/or retrieve required control information (e.g., the target location of the installation) in or
from one and only one place, or through one and only one interface. In other words, user supplied
information should never hav e to be expressed more than once. A user should be able to feel confident
that all aspects of the construction system, that need such information, should retrieve it in a manner
that ensures consistency across the entire system and all uses. Furthermore, it should be possible to
ensure that correct and consistent values are being used no matter what part of the system is invoked.
That is to say, the information should be the same when retrieved during a full or partial construction, or
the invocation of some subset of the construction system.

An extension, or almost a prerequisite, of this objective is that the system should support the trivial
addition of new pieces of construction control information. For example, if the system needs to support
whatsit compilation, there should be a simple mechanism to specify the name of the whatsit processor
and its normal flags through a unique and universally accessible interface.

Finally, if the default value of a piece of control information needs to be changed or overridden within
some subset of a source distribution, it must be ensured that the modification is effective over the entire

-15-

subset.

• Required User Supplied Information Reduced to Minimum Possible: The system has to provide
mechanisms to express construction specifications as succinctly as possible.

For example, in a directory of source that is compiled and archived into an object library, it should be
sufficient to state: ‘‘build and install a library called X’’. From this statement alone, the system should
be able to generate all the required information that will perform that task.

The mechanism used to convert simple specifications into the full construction procedures must be
applicable to as wide a range of applications as possible. It should be relatively simple to add new pro-
cedures. Furthermore, it must be possible to state possible variations to a procedure easily and tersely.
Such variations should not require the total restatement of the construction rules.

• Phased Construction and Distribution Subsets: The construction system must support partial or
phased constructions such that they are absolutely equivalent to the same constructions taking place as
part of a full construction. That is, the user should be able to select parts or phases of the construction
to be done and be assured that the behaviour is equivalent to those same phases being done as part of a
full construction.

Furthermore, there should be few (if any) modifications required if the source to be processed is a sub-
set of the full distribution. For example, one should not have to modify the construction control infor-
mation when parts of the full distribution are excluded for economic, licensing, or other reasons.

• Consistency Between Incremental and Full Constructions: The system must guarantee the consis-
tency of objects produced by an incremental construction with those that would be produced by a full
reconstruction. Incremental reconstructions are defined to be those constructions that skip some con-
struction steps if the object to be produced is determined to be consistent with its component files. The
construction system should ensure that an object is reconstructed if any aspect of its construction has
changed that might result in any significant change to the object itself.

• Support for Testing and Development: Finally, the system should facilitate testing and modification
without endangering the production versions, whilst ensuring the almost trivial addition of those
changes or extensions when completed. Experimentation with the source by a programmer should be
economic and easy to initiate. The system should ensure that the behaviour of a test system in a non-
production environment is truly reflective of the behaviour of that system in the production environ-
ment.

9. Conclusions
And thus ends our initial foray into software hygiene. We hav e barely scratched the surface, but the reader
should now hav e an appreciation of the importance of a proper system construction and installation system,
and the difficulties involved.

We also hope that the reader is aware that software hygiene can work, can be achieved, can be maintained.
It can be done using the principles included in this paper. We hav e concentrated upon generalities, and
upon techniques and objectives that can be immediately applied to new software projects. It is also possible
(difficult, but possible) to apply these principles to existing projects.

Instead of presenting a full-grown system of software hygiene, we have tried to lay out the bare bones of a
philosophy which attempts proper system construction and installation.

Anyone interested in further work in this area is recommended to think about the following topics, which
have not been discussed here:

• Documentation strategies
— styles & forms
— administration and publishing
— supplementary support tools

• Configuration strategies
— natural language specific
— {site/client} specific, options, client proprietary
— machine/system specific

-16-

• Version strategies
— resurrection of old releases
— removal of files and renaming
— documenting and controlling changes

• Testing strategies
— Validation suites
— Local testing, complete testing, in situ testing
— Forms and contents of testing databases

• Post-release Maintenance
— Version naming and tracking
— Bug tracking and auditing
— On-site trouble shooting and support
— Upgrading and auditing of releases

• Interdependency of deliverables on other products

The objectives of applying proper software hygiene are ambitious. The task is a difficult one; any approach
that attempts to solve the problems of medium-to-large scale software will itself be complicated and/or
expensive. It will have to deal with a great many special cases — the ability of programmers to create new
ways of complicating the lives of the software manager is unbounded.

However, we leave you with this thought from our own experience:

It’s worth it.

Appendices

A. The EMS Software Process
The EMS software development process makes extensive use of the tools of the D-Tree, which have been
described elsewhere [Tilbrook 86, 87, 89, 90]. A complete explanation of the D-Tree tools (such as qef) is
impossible; however, it is the process of development that is important here.

A.1. The Source Development Process
Source which has been incorporated into the product (referred to as the baseline or ‘‘published’’ source) is
maintained in a separate source directory. Each programmer works in his or her own source directory. The
following is a brief description of the way in which the programmer develops, modifies, and ‘‘publishes’’
source.

To initialize his or her work space, the programmer creates a source directory. This directory is used to
contain any new or modified source files. The programmer copies a prototype of the construction parame-
ter file into this directory, edits it to set the construction-specific values (i.e., flags to compilers, destination
directory) and then uses a program called treedup to configure the construction control file, called Tr eeVars,
and to duplicate part or all of the directory hierarchy of the baseline source tree in his or her source tree.
This procedure is repeated to create as many parallel object trees (trees in which the system is constructed)
as are required. Usually the programmers will have a tree for their main development machine and will
create object trees as required to test on other platforms.

It is important to note that the only source file used in the construction process not stored in the baseline is
the Tr eeVars file. This file contains all the parameters which may differ from one construction to the next.

To construct the system from the baseline source, the programmer changes to a directory in the appropriate
object tree and goes:

qef

This constructs the product from the baseline source, directing any installations required to construct the
system to the destination directory specified via the construction parameterization file. Note that all source
files are accessed via the full pathname to the baseline source. The only files in the programmer’s source
tree will be files that he or she has created or has fetched for editing.

-17-

To add a new source file, the programmer simply creates the file in the appropriate directory of his or her
source tree. When qef is rerun, new files are added to the source database that is used to create the direc-
tory’s construction script. In the vast majority of cases, no further modification of the source is required to
incorporate the new source file.

To modify existing source, the programmer moves to the appropriate directory in his or her personal source
tree and fetches the file for editing using:

sc edit <files> ...

sc was originally based on Eric Allman’s sccs interface18 (i.e., yet another *CS wrapper), but has been
much modified to support remote source baselines. The above command fetches the named files for edit-
ing, that is, a writable copy of the file is created in the current directory, and the SCCS administration file is
locked via the creation of a p-file. The existence and visibility of this p-file is an important factor in choos-
ing SCCS over RCS. When one is administering 3500 files over 300 directories, a quick way to find all the
files currently being edited is crucial. We hav e also modified the p-file creation routine to embed the name
of the host and directory of the fetched file in the p-file. We also strongly believe in ensuring that files are
not being modified simultaneously by multiple programmers. RCS supports this as an option that can be
easily circumvented or over-looked.19

The programmer then edits the source as required. When qef is rerun in the object tree, files in the pro-
grammer’s source tree versions of the file take precedence over those in the baseline.

The procedure of fetching files for editing into the programmer’s own source tree and rebuilding is repeated
as many times as is required to implement the current development.

Note that throughout the development, the programmer’s source tree need only contain those files required
that are either new or modified versions of baseline source and the object tree contains only files that are
constructed. This total separation of baseline source, modified source and constructed files has many
advantages. Perhaps the most popular among our programmers are: only the command ‘‘ls’’ in the source
directory is needed to determine what files a programmer has changed; only ‘‘rm *’’ in the object tree is
needed to remove constructed files.

When the programmer is satisfied that the modifications are correct and they hav e been tested (preferably
on multiple platforms), the programmer pushes the modifications using:

sc push files ...

These commands ‘‘push’’ the named files to unpub (unpublished source) directory, which is used as a qual-
ity assurance administered buffer between the programmer and the baseline source. The programmer is
required to provide a description and rational for the changes to the file via a specially named file, a −y flag
(a la delta(1)) or as input.

At regular intervals (usually daily), the QA group checks the unpub directory for unpublished files. Time
permitting20, the product should be constructed from the unpub source (it’s just another source tree) and
tested before the modified source is added to the baseline. Given that the change is acceptable, the QA
group ‘‘publishes’’ the modification. This deltas the changes into the file’s SCCS administration file,
updates the baseline g-file (the source in clear test), and adds an activity record to the delta audit trail. It is
then QA’s responsibility to construct the baseline product on all the machines on which there is on-going
development (machines used for demos and full release testing are excluded). If any problems are encoun-
tered, they are immediately rectified. If a programmer introduced an error in the construction due to one of
his or her modifications, it is of the highest priority to rectify the problem immediately and convey neces-
sary changes to the QA group.

18 We chose SCCS over RCS for a variety of reasons, most of which were outlined in [Tilbrook 87] although
some are mentioned in this paper.

19 There is an work-station supplier that prides itself on providing CASE tools that support simultaneous
modifications of source files. We hav e one of their products and it’s the least reliable system in our office. The
inference is clear.

20 It never is.

-18-

A.2. EMS Documentation
The EMS system’s primary objective is to provide a tool-kit with which others may build client-specific
applications. Consequently, documentation of the basic system and, in particular, of the 700 subroutines in
the provided libraries is of utmost importance.

In our approach, documentation is treated in exactly the same manner as any other source. It is maintained
and modified using the same tools and procedures. In fact the mechanism to ‘‘produce’’ the documentation
is the same as to produce the other products (all one ever says is ‘‘qef ’’).

To document subroutines and libraries we use database entries (referred to as man3db entries) embedded in
the source files. The man3db program extracts these entries and creates a variety of products including: the
traditional nroff man file; an indexed fast retrieval database; a software inventory; lint libraries; and a proto-
type database. One important aspect of this approach is that the documentation is lintable, in that the syn-
opsis as defined in the man3db entry is checked against the function itself using lint. Most importantly, any
time a programmer is modifying source, he or she is also modifying the file that contains the appropriate
user documentation. Consequently, changing the documentation to agree with changes in the routine’s
semantics and/or interface is simply a matter of scrolling up a page in the editor.

Finally, all the documentation associated with the project is stored in the project source tree. This includes
the project plan, designs, specifications, discussions of those descriptions, installation notes, testing reports,
project inventories, validation suites, post installation instructions, the bug database, change audit trails and
information to resurrect previous releases.

A.3. Bug Tracking and Testing
Every source component in the EMS source tree is assigned an owner — the developer responsible for the
correctness of the component21. Every component that is to be released, is assigned one or more testers
(developers not involved in its maintenance). A tester is responsible for reviewing the code for complete-
ness, conformance to the few coding standards that exist (see nostrums), agreement of the component’s
code and its documentation, the completeness of the documentation, and for the creation of the compo-
nent’s testing procedures and tools. Testers must review and test those components which have been
assigned to them, though they may report problems wherever they find them.

Whenever a tester discovers a problem, a bug report is prepared and mailed to the QA group. The bug
report contains the source module that contains the error (if known), the priority of the bug (p0 for ‘‘cos-
metic,’’ p4 for ‘‘renders system unusable’’), a one-line description of the bug, a long description of the bug
(including how to duplicate the problem), suggestions as to how the problem may be rectified, the environ-
ment in which the bug occurs, the date the bug was reported, and the reporter’s name.

On receiving a bug report, the QA group attempts to validate it and checks if the bug has already been
reported. If the bug is legitimate and new, the bug report is assigned a reference key and the owner of the
source file is assigned the bug. The bug report is added to the bug database, mailed to the bug’s reporter
and the module’s owner, and posted to the bug-newsgroup.

The owner is then responsible for fixing the bug, testing the fix (if appropriate), ‘‘pushing’’ the fix, inform-
ing QA that the fix has been pushed. QA then asks the bug reporter to verify that the fix is indeed correct
and has not introduced new problems.

To encourage this process, the team is awarded minor bonuses for reaching plateaus of fixed bugs (most
recently a beer and pizza lunch). On a daily basis, bug reporter/owner counts, graphs and tables of the
bugs, and the countdown to the next free lunch are produced and posted on bulletin boards.

It must be noted that performance reviews are not based on bug counts. To do so would require more rigor-
ous evaluation of bugs than they merit or than can be afforded and would discourage the reporting of minor
problems and inconsistencies. We foster mild friendly competition but avoid reprimands. The overall
emphasis is that this exercise is a team effort whose objective is to improve the quality of the software to
the entire team’s benefit and satisfaction.

21 Some organizations (e.g., UCB’s CSRG) use the scheme that the last person who modified the file is respon-
sible for it. However, this scheme discourages people from fixing cosmetic problems or minor errors that do not
require a complete understanding of the module.

-19-

Bibliography

Feldman 78 S.I. Feldman, Make − A Pro gram for Maintaining Computer Programs, Unix Program-
mer’s Manual, volume 2A, Seventh Edition, January, 1979; Bell Laboratories, N.J.

Lientz 79 B.P. Lientz and E.B. Swanson, Software Maintenance: A User/Management Tug of War,
Data Management, pp. 26-30, Apr. 1979.

Meyer 88 Bertrand Meyer, Object-oriented Software Construction, Prentice-Hall, 1988.

Stenning 89 Vic Stenning, Project Hygiene, Usenix Software Management Workshop, New Orleans,
1989.

Tilbrook 86 D.M.Tilbrook and P.R.H. Place, Tools for the Maintenance and Installation of a Large
Software Distribution, EUUG Florence Conference Proceedings, April, 1986, USENIX
Atlanta Conference Proceedings, June 1986.

Tilbrook 87 D.M.Tilbrook and Z.Stern, Cleaning Up UNIX Source -or- Bringing Discipline to Anar-
chy., EUUG Dublin Conference Proceedings, September 1987.

Tilbrook 88 David Tilbrook, Dean Thompson, Mark Lorence A New Look at Some Old Problems,
Unix Review, April, 1988.

Tilbrook 89 David Tilbrook, Under Ten Flags (not always smooth sailing) Usenix Software Manage-
ment Workshop, New Orleans, 1989.

Tilbrook 90 David Tilbrook, Quod Erat/Est/Erit Faciendum, The EUUG Fall 1990 Distribution Tape.

Biographies

David Tilbrook received his B.Sc and M.Sc. from the University of Toronto in 1974 and 1976 respectively.
His masters thesis was on NewsWhole, an interactive newspaper pagination system, and the first graphics
system to use iconic cursors. From 1970 through 1978 he served as a consultant to the Metropolitan
Toronto Library Board on cataloguing and computing systems. He was a co-founder of HCR in 1975
where he stayed until 1978 when he joined Bell-Northern Software Research as Senior Member of Techni-
cal Staff. At BNSR he worked on MASCOT (a design and construction approach for real-time systems),
office systems and information technologies. In 1981 he joined Systems Designers Ltd. to continue work
on MASCOT with Ken Jackson (co-inventor of MASCOT). At SDL he also worked with Vic Stenning on
a variety of small projects, and in 1983 David joined Vic at Imperial Software Technology in London. He
was an associate director of the Information Technology Center (ITC) at Carnegie Mellon University
(CMU) from 1987 to 1989, where he tried (and failed) to bring order to anarchy. David has now returned to
Toronto to work for Sietec OSD. They think that he is the Quality Assurance Manager, but he is actually
the Software Hygiene Research Group. David is an honourary life-time member of the EUUG, for whom
he was conference chair three times. This is his 10th presentation to an EUUG conference.

John H. McMullen is acutely aware that his experience is dwarfed by that of his co-author (but then, so is
his body). He received his B.Sc. from Waterloo in 1984 and spent several years writing user’s manuals for
several companies using a Different Operating System. John is now in Toronto working for Sietec OSD as
a Technical Writer and hopes someday to improve David’s spelling. This is his first paper presented to an
EUUG conference.

Since the original publication of this paper in 1990, both David and John have left Sietec, although David
continues to have a close relationship with Sietec, most recently to port the D-Tree to Windows/NT. David
is now the president of qef Advanced Software Inc., a company formed to create, market and sell the qef
product, in partnership with a Californian distributer. John is working for Softway Inc., in Waterloo.

